EFFECT OF CONVECTION ON THE
MOTION OF SPHERICAL BUBBLES

P. S. Chernyakov UDC 536.423.1

An expression is derived for the drag coefficient of a spherical bubble, taking
account of free, forced, and thermocapillary convection,

We study the effect of free, forced, and thermocapillary convection on the motion of a
spherical bubble in a region where the temperature varies linearly with a coordinate. The
motion of a spherical bubble, taking account of forced and thermocapillary convection, was
treated in [1, 2]. The present article is a refinement and generalization of the results
in [3].

Let us consider a spherical bubble of radius R, rising with a velocity U in an infinite
incompressible viscous liquid in which a constant temperature gradient dA/dZ is maintained
to infinity (Fig. 1). We assume that the Reynolds number Reo » 1 and Re; » 1, and that the
conditions in [3] are satisfied.

We seek the velocity distribution in the liquid and vapor phases in the form [3]
o = ligy+ Voo th = uyy+ Vi, : (1)
where
Uy gy = 1.BU(l—y/R)sin®; u, o= 15UY/R cos9;
Uy o = UF /sin®; v, ,=UFy/sin®; u, gy = 1.5U(1 -+ 4y/R) sin6;
u = —3Uy/R cos b,

L,r¥y

The functions Fo, Fi, uo,r, and Ui r satisfy the following system of equations [3]:

oF, _ 1 @F, | BAT

dp Re, ox = sin?0

(2)
oF, _ 1 ¥ faT,
oY Re, ox sin¢ 9
oy _ 1 8T, oT._ 1 T, )
E;F ~ Pe, Ox2 9y Pe, 0x?
0F, Oor ary sine% =0 4
P e TG (4

and the boundary conditions

TABLE 1. Dependence of Rep, on Groe and
Fr for Ma=0 and Ma= lOQ

Ma=0 Ma=100

Fr ’ Re, Grg l Fr I Re,
2096 80 0 2026 30
2602 100 0 2300 94
5121 200 108 2300 86
7568 300 - 103 2500 98
10412 400 102 3000 118
108 5000 180

104 3000 80

104 5000 160
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Fig. 1. Dependence of Cp on Reo, {curves 1, 2, 3) and
Cp on Reg and Gro (4, 5, 6); 4) Gro=0; 5) 10°; 6) 10“:
a, b) data from [81; ¢) [9].

Fig. 2. Dependence of Cp on Rep and Gr, for Ma=100;
1) Gro=0; 2) 10%; 3) 10°.
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0
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) 93 (1) dT }, (6)

A ¥ ‘
Py (s) dsdh 1 S‘ ox (_
Vi—s 1V = Pe, ) P 4 (p— 1) Viy—r
where
exp ( o Pey )
% e —_——
dA _dA cos® | dA VPe ([ _d ((R y ) cose'j 4O—M 1 gm.
W=y Res® = Gne e 2 S 5 an \UCT S | At
b
Solving the boundary-value problem (2)-(5) and using (6) and [4], we obtain
do dA
Wo -+ 4y -+ R-E% 7
Fy=—6 = P/ 2 jerfe ( x_ VRe )
to ¥ Reg +py V' Rey 2 Vv
» ,
1 91 =+ %o x2Pey
4 %o ( p (——-————) T,
" mVaRe ) vi—1 4y —)
do dA (7)
Mrkw+Rd;d Ve
Fi=—6 — P!/ jerfc (x f‘)
o ¥ Rey + py V' Rey 2V%
P

g
Vio—r

1
+ 1+
' HH/T[Rei (S

p (_ ’ x2P61 ) -
Ap—r) )

where
$
o = Gr, SS‘ AT’ dydh exp( (x—yzReo (x + y® Re, .
16} 7 Rej/? J sin2@) % — A 4(p—2) ( 4(p—2) )]
P .
= Gr, j‘g AT dyd) [exp (__ (* —y)* Rey _ _(x+yFRe V1.
lGVnRe?”ob sin?® Yy —»A 4(p—A) ) 4(¢—x) )]
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gt l/_‘_’_i_ )
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. 1 i dy
7\:1 ao ?\40 ’

We calculate the resisting force D
19

% 1 . 1 )
VR I )
sV 7 Rey oV Re,

, using [5]:

— 9nR? S' (o Sin 6 — T, €08 O)|, 5 sin 0d0

o

where
ou
Trr:"_p0+2“0 %;

r

1 auo,r Up,0
Tro= Mo | 7 50 —'7— *

Substituting (1) and (7) into (8) and neglecting quantities of the order 1/Reo, we obtain

1.20757RpoU Gro (0.254—_’11—
3ito

=)

2108

D: —
Re3/2 (l_ﬁ_ _‘jﬁ_)
0 o Vi
SnRuU (g A, 1 do dA U) (H_
(l+ (P«ipi )”2) ( - o T3 4T dz . Ho /
HoPo \
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Using (9) and neglecting (u:/uo) ¥ vo/vi, which is very much less than unity far from
the critical point, we calculate the drag coefficient Cp:

oD G, , 32 (L Ma)(l _Oﬂi). (10)
Cp— Wsmzss Rey/? +Reo ( + 3 Repr + V Re,

We consider special cases for (10):

1. dA/dz=0, Then

32 0.815
SR I R a (11)
Co Re, ( + V' Re, )

The following expression was derived in [6] for the drag coefficient of a gas bubble in
a liquid for small and moderate Reynolds numbers (0 <Reo<(5):

Cp= 28 (11 0,125Rey). : (12)
Re,

Since, according to [5], the tangential stresses vanish on the surface of a bubble,
there is nonseparating flow around a bubble. Because of nonseparating flow around a spheri-

cal bubble the drag coefficient of the bubble is a monotonically decreasing function of the
Reynolds number,

By using a dissipation function and asymptotic boundary layer methods the following
expression was derived in [7] for the drag coefficient of a spherical gas bubble at large

Reynolds numbers:
48 ( 2.2 )
Cp = | ——}. (13)
° Reg \ VReo

By calculating the dependence of Cp and Reo, from Eq. (12) in the range 0 <Reo<(5, and
by Eq. (13) for 70<{Reo<(350, and interpolating graphically for intermediate Reynolds num-
bers, we obtain a unique dependence of Cp on Reo for 0<Reo<(350 (Fig. 1, curve 1). Curve
2 shows the dependence of Cp on Re, for 70<\Re<(350 from Eq. (11). The maximum difference
of the results calculated by Eqs. (11) and (13) is 20%. TFor comparison Fig. 1 also shows

the experimental dependence of Cp on Reo [8, 9]. Curve 1 was approximated to within 1% by
the method of least squares:

InCp = 2,77014 — 2,45195log;, Re, - 0,0820358 (logyoRe,)? +
1.0,338871 (log,oRe,)® + 0.109637 (log;oReo)s — 0.155004 (logioReo)® - 0,0301038 (logyoRe)e. (14)

Curve 3 shows Cp as a function of Reo, calculated by Eq. (14). The calculated values
of the drag coefficients (1, 2, and 3) are in good agreement with the experimental data.

2, Case of Weightlessness (g=0). We obtain from (10)

32 - Ma 0.815 )
_ 2= el ] 4+ ——1. {15
€= e (1+ 3Reopr>( " VRe, )

Curve 4 shows the calculated dependence of Cp on Reg for Ma=0 (neglecting the Maran-
goni effect) for 80 <Reo<{350 and 0 < Gro,<{10°,

Figure 2 shows the dependence of Cp on Reo and Grp for Ma =100 (B0<{Reo<1350), (0
Groglos) *

It follows from Figs. 1 (4) and 2 that Cp is a monotonically increasing function of Ma
and Gro, and for Gro_>10° it is necessary to take account of the effect of free convection
on the drag coefficient Cp.

Equating the resisting force to the sum of the Archimedes and thermocapillary forces,
we obtain the following equation for the velocity of rise of a bubble:
4 Fr Ma
—_— = AN = -
3 Re? + PrRe

Table 1 shows the dependence of Re, on Fr and Gro for Ma=0 and 100.

Cp=
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NGTATION

R, radius of bubble; r, 0, spherical coordinates; vy, vg, radial and longitudinal
velocity components; z, vertical coordinate; U, wvelocity of rise of bubble; po, pi, pres—
sure; Bo, Bi, coefficient of volume expansion; 0o, p:, density; Uo, M1, dynamic viscosity;
Qa, @, thermal diffusivity of liquid and vapor, respectively; o, surface tension; Trg, Trr,
tangential and normal stressesj D, resisting force; E(x, r), F(x, r), elliptic integrals
of the first and second kinds; z=y/R; x=2zsin’g; Vo =Vo, g/U; vi1=v18/U; Fi=visinb; vi=
ui/pis Cp=2D/(mpoU*R*); Rej = 2RU/vi; Pri=vi/ai; Pei=ReiPri; Grj =gBi x (dA/dz)R*/vi; Fr=

do

dAa 2 s
;2. —9 — = . — e — ) ds; DF=1-—@; [®D* — * . . i =0.1.
8gR3/vy; Ma 2,dT & Rivoae; D (x) Ve j;exp( s?) ds @; z‘(I) (x) §<D (s) ds Subscript 1=0.1
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FREE CONVECTION IN A GRAINY LAYER ALONG
A VERTICAL WALL

D. A, Narinskii UDC 536.244:541,182.8
A solution based on the integral thermal balance equation is offered.

We propose an approximate analytical solution of the problem of free convection produced
by the temperature difference between a wall and a liquid filling an immobile grainy layer
of solid elements. The solution obtained is also applicable to the process of mass exchange.

We make the following assumptions in considering the problem.

1. Liquid convection in the layer occurs in the region of dominance of viscosity
forces.

2. The temperature difference in the layer is mot large, so that the physical param-
eters of the liquid (aside from density) are temperature independent; the density is a
linear function of temperature.

3. The temperatures of grains and liquid are identical, i.e.,, the layer is considered
as a quasihomogeneous medium [1, p. 103].

4, Thermal conductivity in the layer along the liquid flow and thermal resistance at
the wall [1, p. 127] are neglected.

Translated from Inzhenerno-Fizicheskii Zhurmnal, Vol. 40, No. 1, pp. 59-63, January,
1981, Original article submitted October 23, 1979.
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